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Von Neumann-Gale dynamical systems are defined in terms of multivalued
operators possessing properties of convexity and homogeneity. These
operators assign to each element of a given cone a convex subset of the cone
describing possible one-step transitions from one state of the system to another.
Key results on von Neumann-Gale dynamical systems may be regarded as
multivalued nonlinear versions of the Perron-Frobenius theorem.

The classical, deterministic theory of such dynamics was originally aimed at the
modeling of economic growth (von Neumann 1937 and Gale 1956). First
attempts to build a stochastic generalization of this theory were undertaken in
the 1970s by Dynkin, Radner and their research groups. However, the initial
attack on the problem left many questions unanswered. Substantial progress
was made only in the late 1990s, and final solutions to the main open problems
were obtained only in the last 5-6 years. The talk will review this theory and
outline its recently discovered applications in finance.



Multivalued dynamical systems

Given:

Set Xt (state space at time t), t � 0,1,2, . . . ;

multivalued mapping

x � At�x�, x � Xt�1, At�x� � Xt

(transition mapping).

Paths, or trajectories: sequences x0,x1, . . . such that

x t � At�x t�1�.



Von Neumann-Gale dynamical systems

Xt are cones in linear spaces;

for each t, the graph of the transition mapping At���,

Zt � ��x,y� � Xt�1 � Xt : y � At�x��,

is a cone.

Equivalent description in terms of transition cones:

Given: transition cones Zt; paths are sequences x0,x1, . . . such that

�x t�1,x t� � Zt.

Autonomous systems

Xt and At��� (or Zt) do not depend on t.



Example: von Neumann (1937) model of economic growth

Xt � R�
n ,

Zt � R�
n � R�

n polyhedral cones.

States x � �x1, . . . ,xn� � 0 are commodity vectors. The process of economic
growth: dynamics of x t in time. Feasible growth paths x0,x1, . . . :

�x t�1,x t� � Zt .

Elements �x,y� � Zt are feasible input-output pairs, or technological processes
(for the time period t � 1, t). Zt are termed technology sets.



The cone Zt is polyhedral: there is a finite set of basic technological processes

�x t�1
1 ,y t

1�, . . . , �x t�1
m ,y t

m�

and

�x,y� � Zt � �x,y� � �
j�1

m

dj�x t�1
j ,y t

j�,

where

d1 � 0, . . . ,dm � 0

are intensities of operating the technological processes

�x t�1
1 ,y t

1�, . . . , �x t�1
m ,y t

m�.

Gale (1956): general, not polyhedral, cones.



The main notions related to v. N.-G. systems: deterministic case

Assume the system is autonomous: Zt � Z � R�
n � R�

n.

Path: sequence �x t� such that �x t�1,x t� � Z.

Dual path: sequence �pt� such that

pty � pt�1x for all �x,y� � Z.

This implies: if �pt� is a dual path, then for any path �x t�:

p0x0 � p1x1 � p2x2 �. . .

A dual path �pt� supports a path �x t� if

ptx t � 1.



Balanced path: x t � �tx .

Von Neumann path: that balanced path for which � is the greatest.

Balanced dual path: pt � ��tp, � � 0.

Von Neumann equilibrium: triplet ��,x,p� such that �tx is a balanced path and
��tp is a dual path supporting it.

Under general assumptions, ��,x,p� is an equilibrium if and only if

�x,�x� � Z,
py
�

� px for all �x,y� � Z,

px � 1.

Economic meaning: � growth factor of the economy; 1/� discount factor; p
equilibrium prices.

Von Neumann (1937): existence of equilibrium for a polyhedral Z.



Relation to the Perron-Frobenius theorem

Let

Z � ��x,y� : y � Ax�,

where A is a non-negative matrix; Am � 0 for some m. Then ��,x,p� is a von
Neumann equilibrium if and only if

�x � Ax, ��1p � pA, xp � 1.

i.e., � and x are the P-F eigenvalue and eigenvector of A and ��1 and p are the
P-F eigenvalue and eigenvector of the conjugate of A.



Von Neumann, J.: Über ein ökonomisches Gleichungssystem und eine
Verallgemeinerung des Brouwerschen Fixpunktsatzes. In: Ergebnisse eines
Mathematischen Kolloquiums, No. 8, 1935-1936, Franz-Deuticke, 1937, pp.
73–83.

Translated into English: A model of general economic equilibrium, Review of
Economic Studies 13 (1945-1946), 1–9.]

Gale, D.: A closed linear model of production, in: Linear Inequalities and
Related Systems (H.W. Kuhn and A.W. Tucker, eds.), pp. 285–303, Princeton
University Press, Princeton, 1956.

Rockafellar, R.T.: Monotone Processes of Convex and Concave Type,
Memoirs of the American Mathematical Society, Volume 77, AMS, Providence,
1967.



Stochastic von Neumann–Gale dynamical systems

Pioneering work of Eugene Dynkin, Roy Radner and their research groups in
the 1970s.

Given:

Probability space ��,F,P�;

filtration F0 � F1 �. . .� Ft �. . .� F;

set-valued transition mappings

��,a� � At��,a� � R�
n

assigning to each � � � and a � R�
n a set At��,a� � R�

n such that

(i) for each �, the graph

Zt��� :� ��a,b� : b � At��,a��

of the mapping At��, �� is a closed convex cone (transition cone);

(ii) the set-valued mapping Zt��� is Ft-measurable.



Paths (trajectories) x0���,x1���, . . .

x t��� � At��,x t�1���� (a.s.),

or, equivalently,

�x t�1���,x t���� � Zt��� (a.s.)

and

x t is Ft-measurable.

Let Xt denote the space of Ft-measurable random vectors and put

Zt :� ��x,y� � Xt�1 � Xt : �x���,y���� � Zt��� a.s.�.

Thus, a path is a sequence x0,x1,x2, . . . such that
�x t�1,x t� � Zt.



Applications of von Neumann-Gale systems in finance: a dynamic
securities market model

n assets;

a (contingent) portfolio of assets

x t��� � �x t
1���, . . . ,x t

n����, x t � Xt.

trading strategy: a sequence of portfolios

x0,x1,x2, . . . ;

self-financing trading strategy:

�x t�1,x t� � Zt ,

where

Zt :� ��x,y� � Xt�1 � Xt : �x���,y���� � Zt��� a.s.�.

Zt��� cone (transition cone) depending Ft-measurably on �.

�x t�1,x t� � Zt � portfolio x t�1 can be transformed to x t under the self-financing
constraint (with transaction costs).

Self-financing trading strategies: paths in this system.



An example of the transition cone Zt��� in a financial market model with
transaction costs

There are n assets. Given:

St
i��� � St

i���, i � 1, . . . ,n,

the asset i’s bid and ask prices, respectively. (You get St
i��� when you sell and

pay St
i��� when you buy.)

The cone Zt��� consists of �a,b� satisfying

�
i�1

n

St
i�bi � ai�� � �

i�1

n

St
i�ai � bi�� ,

where r� :� max�r, 0�.

According to the definition of Zt���, asset purchases are made only at the
expense of sales of available assets (under transaction costs).



Financial applications of the von Neumann-Gale theory:

I. E., M.A.H. Dempster and M.I. Taksar, Asset pricing and hedging in financial markets with transaction

costs: An approach based on the von Neumann-Gale model, 2006, Annals of Finance, v. 2, 327-355.

I. E., W. Bahsoun and M.I. Taksar, Growth-optimal investments and numeraire portfolios under transaction

costs. Handbook of the Fundamentals of Financial Decision Making. ( L.C. MacLean and W.T.

Ziemba, eds.), 2013.



Dual paths

Sequences p0,p1, . . . (pt � 0, pt is Ft-measurable) satisfying

Epty � Ept�1x, �x,y� � Zt ,

are called dual paths.

Note that if �pt� is a dual path, then for any path �y t�

Ep0y0 � Ep1y1 �. . .� Epty t �. . .

In financial models, dual paths represent market-consistent price systems. In
the models of frictionless markets, they can be expressed through densities of
equivalent martingale measures.

If �x t� is a path, �pt� is a dual path and

ptx t � 1 (a.s.)

then �pt� is said to support �x t�.

Assumption (duality L�,L1): all primal variables x t are essentially bounded; all
dual variables pt are integrable.



The primary focus is on the analysis of rapid paths.

Rapid paths

A path �x t� is called rapid if there exists a dual path �pt� that supports �x t� (i.e.
ptx t � 1 a.s.).

Thus rapid paths are those which are supported by dual paths.

Why "rapid"?



Rapid paths
The term "rapid" is motivated by the fact that rapid paths grow faster than
others.

Proposition. Let �x t� be a path. Let p0,p1, . . . [pt � Xt] be a sequence of random
vectors such that

ptx t � 1 a.s.

Then the following conditions are equivalent:

(i) �pt� is a dual path, and so �x t� is a rapid path;

(ii) �x t�1,x t� maximizes the expected growth rate:

E
pty

pt�1x � E
ptx t

pt�1x t�1
�� 1�, �x,y� � Zt;

(iii) �x t�1,x t� maximizes the expected logarithm of the growth rate:

E ln
pty

pt�1x � E ln
ptx t

pt�1x t�1
� 0, �x,y� � Zt;

(iv) �x t�1,x t� maximizes the ratio Epty/Ept�1x :
Epty

Ept�1x
� Eptx t

Ept�1x t�1
� 1, �x,y� � Zt.



Asymptotic growth-optimality of rapid paths
The most important property of infinite rapid paths (which does not depend on
�pt�) is their asymptotic growth-optimality.

For a vector b � �b1, . . . ,bn�, put |b|� |b1|�. . .�|bn|.

Under a general assumption on the cones Zt��� (see (A3) below), any rapid
path is (asymptotically) growth-optimal: for any other path y0,y1, . . . , we have

sup
|y t|
|x t|

� � a.s.

Remark. The above property remains valid if |�| is replaced by any (possibly
random) function �t���, where c|a|� �t�a� � C|a|, where 0 � c � C are some
random variables.

For example, �t�a� can be the value
�t�a� � Sta

of the portfolio a in some price system St (0 � c � St
i � C).

In the financial interpretation, asymptotic optimality means that no investment
strategy y0,y1, . . . can yield asymptotically faster growth of wealth than x0,x1, . . .



Existence of rapid paths
Assumptions on the transition cones Zt���:

(A1) There exists a constant M such that |b|� M|a| for all �a,b� � Zt���.

(A2) There exists a constant � � 0 such that �e,�e� � Zt���, where
e � �1,1, . . . , 1�.

(A3) There exists an integer l � 1 such that for every t � 0 and i � 1, . . . ,n there
is a path y t,i, . . . ,y t�l,i satisfying

y t,i � e i, . . . ,y t�l,i � �e, � � 0,

where e i � �0,0, . . . , 1, . . . , 0� (ith coordinate is 1).

Theorem. (A1-A2) For each x0��� � �e (� � 0) and each N there exists a finite
rapid path of length N with initial state x0.

(A1-A3) For each x0��� � �e (� � 0) there exists an infinite rapid path with initial
state x0.



Finite rapid paths are solutions to optimization problems of the form

E ln��xN� � max

(� concave, monotone, homogeneous).

I. E. and S. D. Flåm, Rapid growth paths in multivalued dynamical systems generated by homogeneous

convex stochastic operators, 1998, Set-Valued Analysis, v. 6, 61-82.

Infinite paths (general assumptions): W. Bahsoun, I. E. and M. Taksar, Stochastics, 2008, v.

80, 129-142.

Earlier results (under stronger assumptions): I. E. and M. Taksar, Stochastics and
Dynamics, 2001, v. 1, 493-509. Based on

I. E., S.V. Anoulova and V.M. Gundlach, Turnpike theorems for positive multivalued stochastic operators,

2000, Adv. Math. Econ., v. 2, 1-20.



Autonomous systems
Autonomous random dynamical systems serve as a framework for stationary
stochastic models.

In an autonomous von Neumann-Gale system, we are given additionally an
automorphism of the probability space ��,F,P� (time shift) — a measure
preserving one-to-one transformation T : � � � such that

(a) the filtration . . .� F�1 � F0 � F1 �. . .� Ft �. . . (defined here for all
t � 0,�1, . . . ) is invariant

T�1Ft � Ft�1,

(b) for each t, we have Zt�T�� � Zt�1���.

Condition (b) means that the cone-valued process Zt��� is stationary
(stationarity is understood in terms of ergodic theory of dynamical systems).

Definition. A stochastic process (point- or set-valued) 	0���,	1���, . . . is called
stationary if 	t�1��� � 	t�T�� (equivalently, 	t��� � 	0�Tt��).



Balanced paths

In autonomous systems, a central role is played by balanced paths, i.e. paths
of the form

x t :� ��T����T2��. . .��Tt��x�Tt��,

where

���� � 0

is an F0-measurable scalar function and

x��� � 0

is an F0-measurable vector function satisfying

|x���|� 1.

A balanced path grows with stationary proportions x�Tt�� and at a stationary
rate ��Tt��.

In the deterministic case:

x t � �tx.



Von Neumann path

A balanced path maximizing

E log����

among all balanced paths is called a von Neumann path.



The main results for autonomous systems (stationary models)

Assume (A1) - (A3).

Theorem. A von Neumann path exists and is rapid.

A triplet of functions

����,x���,p���

is called a von Neumann equilibrium if

x t :� ��T����T2��. . .��Tt��x�Tt��,

is a von Neumann path and

pt :�
p�Tt��

��T����T2��. . .��Tt��

is a dual path supporting it.

Theorem. A von Neumann equilibrium exists.



Dynkin’s problem. The above results give the positive answer to the existence
problem for a stochastic von Neumann equilibrium posed by Eugene Dynkin in
the early 1970s. In the deterministic case: von Neumann (1937), Gale (1956).

The existence theorem for a von Neumann equilibrium was obtained in the
paper:

I. E. and K. Schenk-Hoppé, Stochastic equilibria in von Neumann-Gale dynamical systems, 2008,

Transactions of the American Mathematical Society, 360, 3345-3364.

The paper relied substantially on the previous work:

I. E. and K. Schenk-Hoppé, Pure and randomized equilibria in the stochastic von Neumann-Gale model,

2007, Journal of Mathematical Economics, 43, 871-887.

L. Arnold, I. E. and V. M. Gundlach, Convex-valued random dynamical systems: A variational principle for

equilibrium states, 1999, Random Operators and Stoch. Equations, 7, 23-38.



Existence of a v.N. equilibrium: the strategy of the proof

The proof is based on the idea of ”elimination of randomization” (Dvoretzky,
Wald and Wolfowitz, 1950).

First an appropriate extension of the original dynamical system is constructed,
using an “additional source of randomness”.

Then, based on some subtle properties of convexity, the randomization is
eliminated and the existence of a von Neumann equilibrium in the original
system is established.



Stationary model.

Fix some time period �t � 1, t�, say �0,1� (by stationarity, it does not matter which
one).

Put

���,a,b� :� max�r � 0 : �a, rb� � Z1����

for a,b in the unit simplex

	 :� �a � 0 : |a|� 1�

(characteristic function of the cone Z1���).

Proposition. A von Neumann path exists if and only if the variational problem

E ln���,y���,y�T��� � max,

y��� � 	,

y��� is F0-measurable,

has a solution.



Randomized stationary mass transfer problem.

E �
	�	

ln���,a,b����,da,db� � max,

���, �, �� is a random measure on 	 � 	,

���, �,	� is F0-measurable,

���,	,C� � ��T�,C,	� 	 C � 	.

Proving that an optimal � exists (easy).

Elimination of randomization: proving that there is an optimal � the form
���,da,db� � 
y����da� 
 
y�T���db�

for some F0-measurable y���.

Ergodic theory � convex analysis in spaces of measurable functions.



Deterministic counterpart: the Romanovskii (1967) version of the mass
transfer problem.

�
	�	

K�a,b���da,db� � max

��	 � 	� � 1;

��	,A� � ��A,	� for all A � 	.

Key question: does there exist a solution of the form

��da,db� � 
y�da� 
 
y�db�

(for some y)? If yes, then clearly, y maximizes K�x,x�.

Characteristic function of a cone. Let Z be the v.N.-G. cone. Put

��a,b� :� max�r � 0 : �a, rb� � Z�.

Define

K�a,b� � ln��a,b�.

The existence of a v. N. path 
 positive answer to the above question.



An important special case: Stochastic Perron-Frobenius theory
Given: probability space ��,F,P�,

filtration . . .� F0 � F1 �. . .� Ft �. . .F

automorphism T : � � �:

TP � T�1P � P, Ft�1 � T�1Ft,

random matrix 0 � A��� : Rn � Rn, F1-measurable.

Von Neumann-Gale cones of the form:

Zt��� � ��a,b� : b � A�Tt�1��a�.



Random Perron-Frobenius eigenvalue and eigenvector
Suppose A���A�T��. . .A�Tl�� � 0 for some l � l���.

Theorem. There is a random scalar ���� � 0 (F1-measurable) and a random
vector x��� � 0 (F0-measurable) such that

����x�T�� � A���x���, |x���|� 1.

The pair ��,x� � 0 satisfying the above two equations is unique.

Von Neumann equilibrium in this system: �x,�,p�,

� and x are the random P.-F. eigenvalue and eigenvector for A��� and T, and p
can be expressed through the random P.-F. eigenvector of A���� and T�1.



Nonlinear generalization
Analogous results hold a class of nonlinear random mappings
A��,x� : � � R�

n � R�
n .

The main assumptions: homogeneity and monotonicity of the mappings.

For two vectors x � �x1, . . . ,xn� and y � �y1, . . . ,yn�, we write x � y if x � y and
x 
 y.

A mapping A : R�
n � R�

n is called monotone if A�x� � A�y� for any vectors
x,y � R�

n satisfying x � y.

It is called completely monotone if it preserves each of the relations x � y, x � y
and x � y between two vectors x,y � R�

n (clearly, if A preserves the second
relation, it preserves the first).

A mapping A is termed strictly monotone if the relation x � y implies A�x� � A�y�.

Let A�x� be linear, i.e., defined by a non-negative matrix A. Then:

A preserves the relation � � A does not have zero columns;

A preserves the relation � � A does not have zero rows;

A is completely monotone � A has no zero rows and columns.

A is strictly monotone � A � 0.



Consider the (nonlinear) cocycle

C�t,�� � A�Tt�1��A�Tt�2��. . .A���, t � 1,2, . . . ,

[We write for convenience A���x � A��,x�, and the product means the
composition of maps.]

Assumptions:

The mapping A��,x� is measurable in � for each x and it is completely
monotone, homogeneous and continuous in x for each �. For almost all � � �,
there is a natural number l (depending on �) such that the mapping C�l,�� is
strictly monotone.

Theorem. There exists a measurable vector function x��� � 0 and a
measurable scalar function ���� � 0 such that

����x�T�� � A���x���, |x���|� 1 (a.s.).

This pair of functions �����,x���� � 0 is unique up to the a.s. equivalence with
respect to P.



Hilbert-Birkhoff metric
Y the (relative) interior of the unit simplex:

Y :� �y � 0 : |y|� 1�.

For x,y � Y,

��x,y� � ln�max
i

x i
y i

� max
j

y j
x j

�.

This is a complete metric on Y (the Hilbert-Birkhoff metric).

A key role in the proofs is played by the following fact. Let A be a mapping
R�

n � R�
n such that A�x� 
 0 for x � Y. Define

f�x� �
A�x�
|A�x�|

, x � Y.

(Recall that Y :� �y � 0 : |y|� 1�.)

Theorem. If A�x� is homogeneous and strictly monotone, then f�x� is contracting
on Y in the H-B metric �, i.e.

��f�x�, f�y�� � ��x,y�

for x,y � Y with x 
 y.
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