Evolutionary Behavioural Finance

Rabah Amir (University of Iowa) Igor Evstigneev (University of Manchester) Thorsten Hens (University of Zurich) Klaus Reiner Schenk-Hoppé (University of Manchester)
The talk introduces to a new research field developing evolutionary and behavioral approaches to the modeling of financial markets.
The talk introduces to a new research field developing evolutionary and behavioral approaches to the modeling of financial markets.

The general goal of this direction of research is to develop a plausible alternative to the classical Walrasian General Equilibrium theory.
The talk introduces a new research field developing evolutionary and behavioral approaches to the modeling of financial markets.

The general goal of this direction of research is to develop a plausible alternative to the classical Walrasian General Equilibrium theory.

The models considered in this field combine elements of stochastic dynamic games (strategic frameworks) and evolutionary game theory (solution concepts).
Conventional models of equilibrium and dynamics of asset markets are based on the principles of **Walrasian General Equilibrium theory**.
Walrasian Equilibrium

- Conventional models of equilibrium and dynamics of asset markets are based on the principles of **Walrasian General Equilibrium theory**.

- In its classical version, this theory assumes that market participants act so as to **maximize utilities** of consumption subject to budget constraints.
Walrasian Equilibrium

- Conventional models of equilibrium and dynamics of asset markets are based on the principles of **Walrasian General Equilibrium theory**.
- In its classical version, this theory assumes that market participants act so as to **maximize utilities** of consumption subject to budget constraints.
- It is assumed that the objectives of economic agents can be described in terms of well-defined and precisely stated constrained optimization problems.
The goal of the present study is to develop an alternative equilibrium concept – **behavioural equilibrium**, admitting that market actors may have different patterns of behaviour determined by their individual psychology, which are **not necessarily describable in terms of individual utility maximization**.
The goal of the present study is to develop an alternative equilibrium concept – **behavioural equilibrium**, admitting that market actors may have different patterns of behaviour determined by their individual psychology, which are **not necessarily describable in terms of individual utility maximization**.

- **Strategies** may involve, for example, mimicking, satisficing, rules of thumb based on experience, etc. Strategies might be **interactive** – depending on the behaviour of the others.
Behavioural equilibrium

The goal of the present study is to develop an alternative equilibrium concept – **behavioural equilibrium**, admitting that market actors may have different patterns of behaviour determined by their individual psychology, which are **not necessarily describable in terms of individual utility maximization**.

Strategies may involve, for example, mimicking, satisficing, rules of thumb based on experience, etc. Strategies might be **interactive** – depending on the behaviour of the others.

Objectives might be of an **evolutionary nature**: **survival** (especially in crisis environments), **domination** in a market segment, fastest capital **growth**, etc. They might be **relative** – taking into account the performance of the others.
Evolutionary Behavioural Finance

- SOURCES
Evolutionary Behavioural Finance

➤ SOURCES

➤ Behavioural economics – studies at the interface of psychology and economics: Tversky, Kahneman, Smith, Shleifer (1990s); the 2002 Nobel Prize in Economics: Kahneman and Smith

Evolutionary Behavioural Finance

- **SOURCES**
- **Behavioural economics** – studies at the interface of psychology and economics: Tversky, Kahneman, Smith, Shleifer (1990s); the 2002 Nobel Prize in Economics: Kahneman and Smith
- **Behavioural finance**: Shiller (the 2013 Nobel Prize in Economics) and others.
Evolutionary Behavioural Finance

- **SOURCES**
- **Behavioural economics** – studies at the interface of psychology and economics: Tversky, Kahneman, Smith, Shleifer (1990s); the 2002 Nobel Prize in Economics: Kahneman and Smith
- **Behavioural finance:** Shiller (the 2013 Nobel Prize in Economics) and others.
- **Evolutionary game theory:** J. Maynard Smith and G. R. Price (1973)
Basic Model

- Invest in assets

Portfolio: $x_i(t) = (x_i(t), 1, ..., x_i(t), K)_{R^K+}$

Vector of market prices: $p(t) = (p(t), 1, ..., p(t), K)_{R^K+}$

The value of the portfolio: $h_p(t) = \sum_{k=1}^{K} p(t), k x_i(t), k$

Stochastic process of states of the world: $a_1, a_2, ...$

History of the process: $a(t) = (a_1, ..., a_t)$

Total amount of asset k in period t: $V_t, k(a_t) > 0$

Dividend of asset k in period t: $D_t, k(a_t) \geq 0$

Vector of investment proportions selected by trader i: $\lambda_{it} = (\lambda_{it}, 1, ..., \lambda_{it}, K)_{R^K+}$

$\lambda_{it} = \lambda_{it}(a_t)$

$\lambda_{it}^2 \Delta K$, $\Delta K = f(c_1, ..., c_K)_{R^K+}$

$\sum_{k=1}^{K} c_k = 1$
Basic Model

- I investors
- K assets
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}_+^K$ of investor i
Basic Model

- \(I \) investors
- \(K \) assets
- Portfolio \(x_t^i = (x_{t,1}^i, \ldots, x_{t,K}^i) \in \mathbb{R}_+^K \) of investor \(i \)
- Vector of market prices \(p_t = (p_{t,1}, \ldots, p_{t,K}) \in \mathbb{R}_+^K \)
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}_+^K$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}_+^K$
- The value of the portfolio $\langle p_t, x_t^i \rangle = \sum_{k=1}^K p_{t,k} x_{t,k}^i$
Basic Model

- I investors
- K assets
- Portfolio $x^i_t = (x^i_{t,1}, ..., x^i_{t,K}) \in \mathbb{R}_+^K$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}_+^K$
- The value of the portfolio $\langle p_t, x^i_t \rangle = \sum_{k=1}^{K} p_{t,k} x^i_{t,k}$
- Stochastic process of states of the world $a_1, a_2, ...$. History of the process $a^t = (a_1, ..., a_t)$
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}_+^K$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}_+^K$
- The value of the portfolio $\langle p_t, x_t^i \rangle = \sum_{k=1}^K p_{t,k} x_{t,k}^i$
- Stochastic process of states of the world $a_1, a_2, ...$. History of the process $a^t = (a_1, ..., a_t)$
- Total amount of asset k in period t: $V_{t,k}(a^t) > 0$
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}^K_+$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}^K_+$
- The value of the portfolio $\langle p_t, x_t^i \rangle = \sum_{k=1}^{K} p_{t,k} x_{t,k}^i$
- Stochastic process of states of the world $a_1, a_2,$ History of the process $a^t = (a_1, ..., a_t)$
- Total amount of asset k in period t: $V_{t,k}(a^t) > 0$
- Dividend of asset k in period t: $D_{t,k}(a^t) \geq 0$
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}_+^K$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}_+^K$
- The value of the portfolio $\langle p_t, x_t^i \rangle = \sum_{k=1}^K p_{t,k} x_{t,k}^i$
- Stochastic process of states of the world $a_1, a_2, ...$. History of the process $a^t = (a_1, ..., a_t)$
- Total amount of asset k in period t: $V_{t,k}(a^t) > 0$
- Dividend of asset k in period t: $D_{t,k}(a^t) \geq 0$
- Vector of investment proportions $\lambda_t^i = (\lambda_{t,1}^i, ..., \lambda_{t,K}^i)$ selected by trader i, $\lambda_t^i = \lambda_t^i(a^t)$
Basic Model

- I investors
- K assets
- Portfolio $x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \in \mathbb{R}_+^K$ of investor i
- Vector of market prices $p_t = (p_{t,1}, ..., p_{t,K}) \in \mathbb{R}_+^K$
- The value of the portfolio $\langle p_t, x_t^i \rangle = \sum_{k=1}^K p_{t,k} x_{t,k}^i$
- Stochastic process of states of the world $a_1, a_2, ...$. History of the process $a^t = (a_1, ..., a_t)$
- Total amount of asset k in period t: $V_{t,k}(a^t) > 0$
- Dividend of asset k in period t: $D_{t,k}(a^t) \geq 0$
- Vector of investment proportions $\lambda_t^i = (\lambda_{t,1}^i, ..., \lambda_{t,K}^i)$ selected by trader i, $\lambda_t^i = \lambda_t^i(a^t)$
- $\lambda_t^i \in \Delta^K, \Delta^K = \{(c_1, ..., c_K) \in \mathbb{R}_+^K : c_1 + ... + c_K = 1\}$ (action of i)
Strategic framework

- **Strategy (portfolio rule)** of investor i: a rule

\[\lambda_t^i = \Lambda_t^i(a^t, H_t) \]

prescribing what vector λ_t^i of investment proportions to select at each time t depending on the history $a^t = (a_1, ..., a_t)$ of states of the world and the history of play

\[H_t = \{ \lambda_s^i : s < t, \ i = 1, ..., I \}. \]
Strategy (portfolio rule) of investor i: a rule

$$\lambda_t^i = \Lambda_t^i(a^t, H_t)$$

prescribing what vector λ_t^i of investment proportions to select at each time t depending on the history $a^t = (a_1, ..., a_t)$ of states of the world and the history of play

$$H_t = \{\lambda_s^i : s < t, \; i = 1, ..., I\}.$$

Basic strategy: $\Lambda_t^i = \Lambda_t^i(a^t)$ depends only on a^t and not on H_t.
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{l} \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle \]

(1)
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{l} \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle \] \hspace{1cm} (1)

- \(p_{t,k} \) equilibrium price of asset \(k \)
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{l} \lambda_{t,k}^{i} \langle p_{t} + D_{t}, x_{t-1}^{i} \rangle \] \hspace{1cm} (1)

- \(p_{t,k} \) equilibrium price of asset \(k \)
- investor \(i \)'s wealth: \(w_{t}^{i} = \langle p_{t} + D_{t}, x_{t-1}^{i} \rangle \)
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{I} \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle \]

\[\alpha \] is the investment rate, and \(0 < \alpha < 1 \)
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{I} \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle \]

- \(p_{t,k} \) equilibrium price of asset \(k \)
- investor \(i \)'s wealth: \(w_t^i = \langle p_t + D_t, x_{t-1}^i \rangle \)
- \(0 < \alpha < 1 \) investment rate
- investor \(i \)'s portfolio \(x_t^i = (x_{t,1}^i, ..., x_{t,K}^i) \):

\[x_{t,k}^i = \frac{\alpha \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle}{p_{t,k}} = \frac{\alpha \lambda_{t,k}^i w_t^i}{p_{t,k}} \]
Short-run equilibrium

- Short-run equilibrium:

\[p_{t,k} V_{t,k} = \alpha \sum_{i=1}^{l} \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle \]

\[(1) \]

- \(p_{t,k} \) equilibrium price of asset \(k \)
- investor \(i \)'s wealth: \(w_t^i = \langle p_t + D_t, x_{t-1}^i \rangle \)
- \(0 < \alpha < 1 \) investment rate
- investor \(i \)'s portfolio \(x_t^i = (x_t^i, ..., x_t^K) \):

\[x_{t,k}^i = \frac{\alpha \lambda_{t,k}^i \langle p_t + D_t, x_{t-1}^i \rangle}{p_{t,k}} = \frac{\alpha \lambda_{t,k}^i w_t^i}{p_{t,k}} \]

- Equations (1) can be written as

\[V_{t,k} = \sum_{i=1}^{l} x_{t,k}^i \text{ (supply = demand)} \]
Dynamics. Outcome of the game

- Fix a strategy profile $\Lambda = (\Lambda^1, ..., \Lambda^I)$ of I investors. Generate step by step, from t to $t + 1$ equilibrium asset price vectors p_t and for each investor i, vectors of investment proportions λ^i_t, and portfolios x^i_t.

Outcome of the game for player i is the random sequence of i’s market shares $r^i_0, r^i_1, r^i_2, ...$.
Dynamics. Outcome of the game

- Fix a strategy profile $\Lambda = (\Lambda^1, ..., \Lambda^I)$ of I investors.
 Generate step by step, from t to $t + 1$ equilibrium asset price vectors p_t and for each investor i, vectors of investment proportions λ^i_t, and portfolios x^i_t.

- Compute for each t, i investor i’s wealth $w^i_t = \langle p_t + D_t, x^i_{t-1} \rangle$, the total market wealth $W_t := \sum_{i=1}^I w^i_t$ and investors’ market shares $r^i_t := w^i_t / W_t$.
Dynamics. Outcome of the game

- Fix a strategy profile $\Lambda = (\Lambda^1, ..., \Lambda^I)$ of I investors. Generate step by step, from t to $t + 1$ equilibrium asset price vectors p_t and for each investor i, vectors of investment proportions λ^i_t, and portfolios x^i_t.

- Compute for each t,i investor i’s wealth $w^i_t = \langle p_t + D_t, x^i_{t-1} \rangle$, the total market wealth $W_t := \sum_{i=1}^I w^i_t$ and investors’ market shares $r^i_t := w^i_t / W_t$.

- **Outcome** of the game for player i is the random sequence of i’s market shares $r^i_0, r^i_1, r^i_2, ...$.
Solution concept: Survival strategy

A strategy Λ^i of player i is called a **survival strategy** if for any strategies Λ^j of players $j \neq i$ the market share r^i_t of player i is bounded away from zero almost surely:

$$\inf_t r^i_t > 0 \text{ almost surely.}$$
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, $E_tD_{t+s,k} > 0$ for some $s \geq 1$.
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, $E_t D_{t+s, k} > 0$ for some $s \geq 1$.

- **Assumption 2.** $V_{t,k} = \gamma^t V_k$, $\gamma \geq 1$.

- **Theorem 1.** The portfolio rule $\Lambda_t = (\lambda_t)$ is a survival strategy.

- **Theorem 2.** If $\Lambda_t = (\lambda_t)$ is a basic survival strategy, then $\sum_{t=0}^{\infty} \lambda_t < \infty \ (a.s.)$.

- Theorems 1 and 2: existence and asymptotic uniqueness of survival strategy.
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, \(E_t D_{t+s,k} > 0 \) for some $s \geq 1$.

- **Assumption 2.** \(V_{t,k} = \gamma^t V_k, \gamma \geq 1 \).

- Define: \(\rho = \alpha / \gamma \) and \(R_{t,k} = D_{t,k} V_k / \sum_{m=1}^{K} D_{t,m} V_m \) (relative dividends).
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, $E_t D_{t+s,k} > 0$ for some $s \geq 1$.

- **Assumption 2.** $V_{t,k} = \gamma^t V_k$, $\gamma \geq 1$.

- Define: $\rho = \alpha / \gamma$ and $R_{t,k} = D_{t,k} V_k / \sum_{m=1}^{K} D_{t,m} V_m$ (relative dividends).

- Consider the basic portfolio rule $\Lambda^* = (\lambda^*_t)$, where

$$
\lambda^*_{t,k} = E_t \sum_{l=1}^{\infty} (1 - \rho) \rho^{l-1} R_{t+l,k}
$$
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, $E_t D_{t+s,k} > 0$ for some $s \geq 1$.

- **Assumption 2.** $V_{t,k} = \gamma^t V_k$, $\gamma \geq 1$.

- Define: $\rho = \alpha / \gamma$ and $R_{t,k} = D_{t,k} V_k / \sum_{m=1}^{K} D_{t,m} V_m$ (relative dividends).

- Consider the basic portfolio rule $\Lambda^* = (\lambda_t^*)$, where

 $$
 \lambda_{t,k}^* = E_t \sum_{l=1}^{\infty} (1 - \rho) \rho^{l-1} R_{t+l,k}
 $$

- **Theorem 1.** The portfolio rule Λ^* is a survival strategy.
Central Results

- **Assumption 1.** For all t, k with strictly positive probability, $E_t D_{t+s,k} > 0$ for some $s \geq 1$.

- **Assumption 2.** $V_{t,k} = \gamma^t V_k$, $\gamma \geq 1$.

- Define: $\rho = \alpha / \gamma$ and $R_{t,k} = D_{t,k} V_k / \sum_{m=1}^{K} D_{t,m} V_m$ (relative dividends).

- Consider the basic portfolio rule $\Lambda^* = (\lambda^*_t)$, where

$$
\lambda^*_{t,k} = E_t \sum_{l=1}^{\infty} (1 - \rho) \rho^{l-1} R_{t+l,k}
$$

- **Theorem 1.** The portfolio rule Λ^* is a survival strategy.

- **Theorem 2.** If $\Lambda = (\lambda_t)$ is a basic survival strategy, then
 $$
 \sum_{t=0}^{\infty} ||\lambda^*_t - \lambda_t||^2 < \infty \text{ (a.s.)}
 $$
Central Results

- **Assumption 1.** For all \(t, k \) with strictly positive probability,
 \(E_t D_{t+s, k} > 0 \) for some \(s \geq 1 \).

- **Assumption 2.** \(V_{t, k} = \gamma^t V_k, \gamma \geq 1 \).

- Define: \(\rho = \alpha / \gamma \) and \(R_{t, k} = D_{t, k} V_k / \sum_{m=1}^{K} D_{t, m} V_m \) (relative dividends).

- Consider the basic portfolio rule \(\Lambda^* = (\lambda^*_t) \), where

\[
\lambda^*_{t, k} = E_t \sum_{l=1}^{\infty} (1 - \rho) \rho^{l-1} R_{t+l, k}
\]

- **Theorem 1.** The portfolio rule \(\Lambda^* \) is a survival strategy.

- **Theorem 2.** If \(\Lambda = (\lambda_t) \) is a basic survival strategy, then
 \(\sum_{t=0}^{\infty} ||\lambda^*_t - \lambda_t||^2 < \infty \) (a.s.).

- **Theorems 1 and 2:** existence and asymptotic uniqueness of survival strategy.
Some References

This textbook is an elementary introduction to the key topics in mathematical finance and financial economics - two realms of ideas that substantially overlap but are often treated separately from each other. Our goal is to present the highlights in the field, with the emphasis on the financial and economic content of the models, concepts and results. The book provides a novel, unified treatment of the subject by deriving each topic from common fundamental principles and showing the interrelations between the key themes. Although the presentation is fully rigorous, with some rare and clearly marked exceptions, the book restricts itself to the use of only elementary mathematical concepts and techniques. No advanced mathematics (such as stochastic calculus) is used.